6 research outputs found

    A Social Network Approach for Investigating Social Influences on Effective Use: Demonstration in Virtual Reality Collaboration

    Get PDF
    Merely using new collaboration technologies does not necessarily result in the desired benefits, which is why it is important to understand what constitutes effective use behavior. In information systems research, the affordance network approach has been developed as a methodological approach to investigate effective use behavior. The approach has already been applied to understand the effective use of electronic medical record systems and fitness wearables; however, it neglects how social influences foster or hinder effective use behavior in collaborative settings. Therefore, we supplemented the affordance network approach for collaborative contexts by using social network methods. We demonstrate our approach based on two university courses in which students carried out group work within the collaborative VR application Spatial. Thereby, we contribute a methodological approach that enables researchers to identify influential users who encourage their team members to actualize affordances leading to goal achievement

    Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes

    Get PDF
    Pose estimation methods for robotically guided magnetic actuation of capsule endoscopes have recently enabled trajectory following and automation of repetitive endoscopic maneuvers. However, these methods face significant challenges in their path to clinical adoption including the presence of regions of magnetic field singularity, where the accuracy of the system degrades, and the need for accurate initialization of the capsule's pose. In particular, the singularity problem exists for any pose estimation method that utilizes a single source of magnetic field if the method does not rely on the motion of the magnet to obtain multiple measurements from different vantage points. We analyze the workspace of such pose estimation methods with the use of the point-dipole magnetic field model and show that singular regions exist in areas where the capsule is nominally located during magnetic actuation. Since the dipole model can approximate most magnetic field sources, the problem discussed herein pertains to a wider set of pose estimation techniques. We then propose a novel hybrid approach employing static and time-varying magnetic field sources and show that this system has no regions of singularity. The proposed system was experimentally validated for accuracy, workspace size, update rate and performance in regions of magnetic singularity. The system performed as well or better than prior pose estimation methods without requiring accurate initialization and was robust to magnetic singularity. Experimental demonstration of closed-loop control of a tethered magnetic device utilizing the developed pose estimation technique is provided to ascertain its suitability for robotically guided capsule endoscopy. Hence, advances in closed-loop control and intelligent automation of magnetically actuated capsule endoscopes can be further pursued toward clinical realization by employing this pose estimation system

    Component based design of a drug delivery capsule robot

    Get PDF
    Since the introduction of Wireless Capsule Endoscopy (WCE) researchers have started exploring the design space of Medical Capsule Robots (MCRs): embedded micro-systems that can operate autonomously within the human body and can diagnose, prevent, monitor, and cure diseases. Although the research in the area of MCRs is an active topic and has grown exponentially, current devices provide only limited functionalities because their design process is expensive and time consuming. To open this research field to a wider community and, at the same time, create better designs through advanced tool support, in our previous works we presented a design environment for the rapid development of MCRs. In this paper, this environment was adopted to design a Drug Delivery Capsule (DDC) based on a coil-magnet-piston mechanism. The force of the coil acting on the magnetic piston and the drug release profile were modeled and assessed on bench-top with a maximum relative error below 5%. Then, in vivo trials were performed to validate the DDC functionality with a scheduled drug release profile for a 5 h and 24 min procedure. The resulting design environment template is available open source for further development of drug delivery applications as well as to serve as guideline in prototyping novel MCRs addressing other clinical needs

    Stimulating a Canadian narrative for climate

    Get PDF
    ABSTRACT: This perspective documents current thinking around climate actions in Canada by synthesizing scholarly proposals made by Sustainable Canada Dialogues (SCD), an informal network of scholars from all 10 provinces, and by reviewing responses from civil society representatives to the scholars' proposals. Motivated by Canada's recent history of repeatedly missing its emissions reduction targets and failing to produce a coherent plan to address climate change, SCD mobilized more than 60 scholars to identify possible pathways towards a low-carbon economy and sustainable society and invited civil society to comment on the proposed solutions. This perspective illustrates a range of Canadian ideas coming from many sectors of society and a wealth of existing inspiring initiatives. Solutions discussed include climate change governance, low-carbon transition, energy production, and consumption. This process of knowledge synthesis/creation is novel and important because it provides a working model for making connections across academic fields as well as between academia and civil society. The process produces a holistic set of insights and recommendations for climate change actions and a unique model of engagement. The different voices reported here enrich the scope of possible solutions, showing that Canada is brimming with ideas, possibilities, and the will to act

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Stimulating a Canadian narrative for climate

    Get PDF
    This perspective documents current thinking around climate actions in Canada by synthesizing scholarly proposals made by Sustainable Canada Dialogues (SCD), an informal network of scholars from all 10 provinces, and by reviewing responses from civil society representatives to the scholars’ proposals. Motivated by Canada’s recent history of repeatedly missing its emissions reduction targets and failing to produce a coherent plan to address climate change, SCD mobilized more than 60 scholars to identify possible pathways towards a low-carbon economy and sustainable society and invited civil society to comment on the proposed solutions. This perspective illustrates a range of Canadian ideas coming from many sectors of society and a wealth of existing inspiring initiatives. Solutions discussed include climate change governance, low-carbon transition, energy production, and consumption. This process of knowledge synthesis/creation is novel and important because it provides a working model for making connections across academic fields as well as between academia and civil society. The process produces a holistic set of insights and recommendations for climate change actions and a unique model of engagement. The different voices reported here enrich the scope of possible solutions, showing that Canada is brimming with ideas, possibilities, and the will to act
    corecore